
2

Synthesizing Waves from Animated Height Fields

MICHAEL B. NIELSEN
Weta Digital and Aarhus University
ANDREAS SÖDERSTRÖM
Weta Digital
and
ROBERT BRIDSON
Weta Digital and University of British Columbia

Computer animated ocean waves for feature films are typically carefully
choreographed to match the vision of the director and to support the telling
of the story. The rough shape of these waves is established in the previsual-
ization (previs) stage, where artists use a variety of modeling tools with fast
feedback to obtain the desired look. This poses a challenge to the effects
artists who must subsequently match the locked-down look of the previs
waves with high-quality simulated or synthesized waves, adding the detail
necessary for the final shot. We propose a set of automated techniques for
synthesizing Fourier-based ocean waves that match a previs input, allowing
artists to quickly enhance the input wave animation with additional higher-
frequency detail that moves consistently with the coarse waves, tweak the
wave shapes to flatten troughs and sharpen peaks if desired (as is charac-
teristic of deep water waves), and compute a physically reasonable velocity
field of the water analytically. These properties are demonstrated with sev-
eral examples, including a previs scene from a visual effects production
environment.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Physically based modeling

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Fluid modeling, fluid control, animation,
fluid simulation, physically based animation

Authors’ addresses: M. B. Nielsen (corresponding author), Aarhus Univer-
sity, Aabogade 34, 8200 Aarhus N, Denmark; email: nielsenmb@gmail.
com; A. Söderström, Weta Digital, 9-11 Manuka Street, Miramar, Welling-
ton, New Zealand 6022; R. Bridson, University of British Columbia, 201–
2366 Main Mall, Vancouver, BC, Canada V6T 1Z4.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2013 ACM 0730-0301/2013/01-ART2 $15.00

DOI 10.1145/2421636.2421638
http://doi.acm.org/10.1145/2421636.2421638

ACM Reference Format:

Nielsen, M. B., Söderström, A., and Bridson, R. 2013. Synthesizing waves
from animated height fields. ACM Trans. Graph. 32, 1, Article 2 (January
2013), 9 pages.
DOI = 10.1145/2421636.2421638
http://doi.acm.org/10.1145/2421636.2421638

1. INTRODUCTION

Physics-based animation in a standard visual effects pipeline is
faced with some unique difficulties in terms of the balance between
artistic control — what a shot is required to look like based on
a nonphysical previsualization (previs) approved by the director
— and physical realism — how the phenomenon would naturally
evolve forward without control. In this article we tackle a common
and important instance in the form of ocean waves.

Much attention has been devoted to the synthesis and evolution
of ocean waves from physical principles, both in continuum me-
chanics [Lautrup 2005] and computer graphics [Tessendorf 1999;
Bridson 2008; Darles et al. 2011]. However, as far as we know
nobody has researched how to match physically based waves to an
existing animation produced by arbitrary means. Indeed, in produc-
tion it is common for previs artists to use any number of techniques
such as blending, smoothing, procedural noise and deformers (in
addition to more physical FFT synthesis) to achieve the timing and
rough shapes needed to tell the story. The resulting animated surface
geometry cannot be directly imported back into an FFT-based tool
for developing into the final shot.

In practice, effects artists may instead generate a large random
FFT ocean from scratch and manually search through it for areas
which roughly match the previs input. The more complex the previs
waves, the harder and more tedious this search becomes. Alterna-
tively, higher-frequency displacement detail can be layered directly
on the previs geometry, but estimating the propagation speeds for
the detail to be visually consistent with the apparent physics of the
previs waves is difficult, and adjustments of the large previs waves
to appear more realistic (e.g., by flattening troughs and sharpening
peaks) is even harder. We tackle the problem head on. We take pre-
vis input in the form of an animated height field (a grid topology
mesh) without making any assumptions about how it was animated.
Our method makes the following contributions.

(1) We optimize fitting of a Fourier-based model of wave propa-
gation to previs model data over the duration of the animation,
solving for wave amplitudes, phase shifts, and speeds.

(2) We resolve mesh self-intersections caused by adding physi-
cally based horizontal displacement using a new optimization

ACM Transactions on Graphics, Vol. 32, No. 1, Article 2, Publication date: January 2013.

2:2 • M. B. Nielsen et al.

Fig. 1. (Left) Input previs of waves from a visual effects production environment. Only geometry is provided. Angular frequencies and amplitudes vary
in time. (Middle) Output synthesized waves. Horizontal displacements and high frequencies have been added based on an estimation of wave parameters
(amplitude, phase shift, and angular frequency) for each wave vector present in the input. This enhances the previs with flat troughs and sharp peaks that
characterize true deep water waves while retaining a correspondence to and the timing of the previs. (Right) Analytical surface velocities projected onto a
plane.

method which is significantly better at tracking the desired
result than previous methods.

(3) We estimate physical depth required for the animation to
drive a consistent dispersion relation for synthesizing higher-
frequency detail with standard wave spectrum models.

(4) We optionally provide a physically consistent velocity (or time-
varying displacement) field at and below the surface for addi-
tional processing.

Figure 2 illustrates these steps in cross-section. The first step in
particular embodies the compromise we take between following the
artistic input and following a physical model of waves. We generate
waves as close as possible to the input animation that maintain
coherent velocity and amplitude, a requirement which we argue
broadly captures the physicality of deep ocean waves. However, we
do not make any requirements on a particular dispersion relation
(wave speed as a physically consistent function of wave length),
and allow wave parameters to change over time, viewing this as
a much less visible aspect of physics that could be modified for
artistic reasons. If the input happens to be periodic and consistent
with the physical model, the method reproduces those waves with
high precision as can be seen in Figure 7. It should be mentioned that
the linear physical model of waves, strictly speaking, is only valid
for relatively small amplitudes compared to wave length. However,
years of industry experience show that it can be pushed well beyond
this limit and still produce convincingly natural animation. At the
time of writing this article our new method is being evaluated in a
large-scale production environment.

2. RELATED WORK

As general background, Lautrup [2005] provides a survey of waves
in the context of continuum mechanics; Darles et al. [2011] survey
techniques for ocean simulation in computer graphics.

Ocean wave models in graphics begin with the Gerstner wave
approaches of Peachey [1986] and Fournier and Reeves [1986].
Mastin et al. [1987] use the Fourier transform to synthesize
plausible waves by filtering random coefficients to match the
Pierson-Moskowitz spectrum. Tessendorf [1999] later presented
Fourier-based methods for synthesizing, animating, and rendering
realistic oceans which have since become standard across the
industry. Tessendorf also discusses adding “chop” with horizontal

displacements, and a simple approach to detect where this causes
a self-intersection. Angelidis et al. [2011] mention a procedural
method for removing self-intersections (but do not provide any
detail) and develop a design tool for layout artists.

Many authors have worked in the general area of fluid con-
trol, matching input simulations/animations but not tackled ocean
waves [Treuille et al. 2003; McNamara et al. 2004; Shi and Yu
2005a, 2005b; Hong and Kim 2004; Fattal and Lischinski 2004;
Thürey et al. 2006; Nielsen et al. 2009; Nielsen and Christensen
2010; Rasmussen et al. 2004; Huang et al. 2011; Nielsen and Brid-
son 2011; Bhatacharya et al. 2012]. Mihalef et al. [2004] propose a
method for designing and simulating breaking waves by lofting 2D
wave slices which are then used as input to a full 3D simulation,
but this does not fit the deep ocean previs pipeline.

Other authors have explored using the forward Fourier transform
for estimating and synthesizing ocean waves from an input sequence
of some form. Thon and Ghazanfarpour [2002] propose a method
for estimating adaptively sampled amplitudes and spatial frequen-
cies from the FFT of a picture of waves. The amplitudes and spatial
frequencies are based on a quadtree refinement of the image spec-
trum in Fourier space. The method considers only a single image
and hence does not consider the temporal dimension: in particular
the method does not estimate phase shifts and dispersion relations,
and the waves are animated by shifting the phases of the estimated
waves. Frechot [2007] similarly samples ocean spectrums based on
a quadtree representation of wave vectors and amplitudes.

Tessendorf [1999] describes a technique used for estimating wave
amplitudes and speeds based on a Power Spectral Density (PSD)
analysis of a video sequence. The result of the PSD, which consists
of Fourier transforms in time and space, is a numerical approxi-
mation of a statistical average of the amplitude as a function of
spatial and angular frequency. This approach typically employs 1–2
minutes of video footage in order to obtain a full spectrum in both
time and space. Our proposed estimation algorithm employs Fourier
transforms in space combined with a nonlinear optimization in time.
This allows us to use data from a relatively small window in time
and detect temporal changes in dispersion under the assumption
that angular frequency is a function of the wave vector and time.

Spencer et al. [2006] determine the scale of waves and sea state
from video. In particular the scale is found by assuming a deep
water dispersion relation and measuring the difference between
propagation speeds for different wavelengths. Sea state is estimated

ACM Transactions on Graphics, Vol. 32, No. 1, Article 2, Publication date: January 2013.

Synthesizing Waves from Animated Height Fields • 2:3

(a) input height field

(b) estimated waves

(c) estimated waves with x-displacements and
self-intersections

(d) self-intersection handling based on Jaco-
bian (approach is conservative and subject to
temporal instability)

(e) our proposed self-intersection handling
based on explicit optimization

(f) addition of synthesized high-frequency
detail

(g) shows an additional layer at finite depth
with attenuated movement compared to the
surface layer

Fig. 2. Illustration of the various steps involved in the estimation and
synthesis of waves. Note that the signal in question is not periodic.

by fitting a two-parameter Phillips spectrum [Tessendorf 1999] (the
unknowns being wind speed and Phillips amplitude) to the video
sequence in PSD space. Given the wind speed, the sea state can be
determined from a Beaufort chart. In contrast, we estimate disper-
sion relation, phase shift, and amplitude for all wave vectors.

3. ESTIMATION OF WAVE PARAMETERS

In this section we describe in detail our algorithm for estimating
wave parameters from a time-varying input height field. For the
applications considered in this article, the estimation of the wave
parameters is important mainly for synthesizing the velocity field
and adding higher-frequency detail that moves consistently with
the coarse waves; knowledge of the exact wave parameters is not

ALGORITHM 1: (Aij (tr), θij (tr), ωij (tr))
= estimateWaveParameters
Input: h {input height field}
Input: nx, nz, nt {dimensions in space and time}
Input: τ {convergence threshold}
Input: �t {time-step between samples in time}
Input: w {window of samples in time}
Require: w ≥ 3

for r = 0 → nt do
{solve for wave parameters at time tr :}
for (i, j) = (−nx/2 + 1, 0) → (nx/2 − 1, nz/2 − 1) do
{solve for Fourier modes (i, j) and (−i, −j):}
{outer loop of non-linear least squares:}
while residual ≥ τ do

non-linear search for (ωij , ω−i,−j)
{linear least squares solve:}
(residual, Bij , B−i,−j) = LSQ(Eq. (7),ωij ,ω−i,−j)

end while
end for

end for

strictly required to add horizontal displacements for flatter troughs
and sharper peaks.

In the approach to synthesizing waves summarized by Tessendorf
[1999], the wave parameters are all fixed in time. For matching
previs input, however, it is necessary to allow these to vary with
time and we perform the estimation as follows. Given a nonphysi-
cally based animated input height field sampled in space and time,
h(xp, zq, tr), we wish to fit to h a sum of constant-frequency co-
sine waves. This cosine representation of waves is used in both
graphics [Bridson 2008; Tessendorf 1999] and continuum mechan-
ics [Lautrup 2005]. At each instant the cosine waves are estimated
by keeping their phase-shift, amplitude, and angular frequency pa-
rameters constant inside a small temporally symmetric window. In
particular the following expression is minimized at each point in
time, tr :

w/2∑
s=−w/2

nx−1∑
p=0

nz−1∑
q=0

|h(xp, zq, tr+s) − h̃(xp, zq, tr , s)|2 (1)

where xp = pLx/nx , zq = qLz/nz, tr = rLt/nt , Lx × Lz is the
size of the domain in world space, nx × nz is the number of sample
points, w is the window of samples in time contributing to the
estimation at time tr , and h̃ is the sum of cosine waves given by

h̃(xp, zq, tr , s) =
nx/2−1∑

i=−nx/2+1

nz/2−1∑
j=−nz/2+1

Aij (tr) (2)

· cos
(
�k · (xp, zq) − �rs

ij + θij (tr)
)

where θij (tr) is the phase shift, �rs
ij = ∫ tr

t=0 ωij (t)dt + s�tωij (tr)
integrates the angular frequency, ωij (tr) is the angular frequency,
�t is the time step used in the estimation, �k = 2π (i/Lx, j/Lz)
is the wave vector, k = ||�k||2 is the wave number, and Aij is the
amplitude. The unknowns at each point in time tr are the phase shifts
θij (tr), the angular frequencies ωij (tr), and the amplitudes Aij (tr).
The known quantity

∫ tr

t=0 ωij (t)dt contained in �rs
ij represents the

phase change of the cosine wave solved for sequentially from the
first to the previous frame and cannot in practice be coalesced with

ACM Transactions on Graphics, Vol. 32, No. 1, Article 2, Publication date: January 2013.

2:4 • M. B. Nielsen et al.

the unknown phase shift θij (tr). While the phase shift is mostly
constant in time we observed that it is indeed important for the
stability of the estimated waves to allow the phase shift to change
over time. This is particularly the case when the amplitude of a
certain frequency wave first decreases (to the extent where angular
frequency estimation becomes unreliable) and later increases again.

In the preceding formulation of the minimization problem, each
point sampled in space depends on all cosine waves, hence all
unknowns are coupled. However, it turns out that by transforming
the minimization problem into Fourier space, only the two cosine
waves with spatial frequencies (i, j) and (−i,−j) are coupled. This
simplifies the minimization problem and allows us to solve for each
such pair of spatial frequencies independently.

In particular, the discrete form of Parseval’s theorem [Wong 2011]
implies that ||F[g]||22 = nxnz||g||22, where F[g] is the discrete
Fourier transform of g. Hence minimizing Eq. (1) is identical to
minimizing

w/2∑
s=−w/2

nx/2−1∑
i=−nx/2+1

nz/2−1∑
j=−nz/2+1

|F[h]ij (tr) − F[h̃]ij (tr , s)|2. (3)

Since both h and h̃ are real-valued, their Fourier transform is com-
plex conjugate even. The Fourier coefficients of a sum of cosine
waves similar to Eq. (2) is given in Bridson [2008]. However, in our
case the wave parameters depend on time and the angular frequency
depends on direction of travel as well. The Fourier coefficients of
the wave, h̃, in Eq. (2) are given by

F[h̃]ij (tr) = 1

2
e

√−1(θij (tr)−�rs
ij

)
Aij (tr) (4)

+ 1

2
e

−√−1(θ−i,−j (tr)−�rs
−i,−j

)
A−i,−j (tr).

Hence, for each pair of spatial frequencies (i, j) and (−i, −j) we
minimize

w/2∑
s=−w/2

|F[h]ij (tr) − F[h̃]ij (tr , s)|2, (5)

with respect to the six unknowns Aij , A−i,−j , θij , θ−i,−j , ωij and
ω−i,−j at time tr .

These equations exhibit a nonlinear dependence on the phase
shifts and the angular frequencies. However, by rewriting the Fourier
coefficients as

F[h̃]ij (tr , s) = 1

2
e

−√−1(�rs
ij

)
Bij (tr) (6)

+ 1

2
e

√−1(�rs
−i,−j

)
B−i,−j (tr)

where Bij = e
√−1(θij (tr))Aij (tr) and B−i,−j =

e−√−1(θ−i,−j (tr))A−i,−j (tr) are complex numbers, we can reduce the
nonlinear optimization to include only the angular frequencies. In
particular, given Bij , we have Aij = √

Re(Bij)2 + Im(Bij)2 and

θij = tan−1(
Im(Bij)
Re(Bij)).

Our estimation algorithm is summarized in Algorithm 1. At each
consecutive point in time tr and for each pair of spatial frequencies
(i, j) and (−i,−j), an outer loop performs a nonlinear optimization
of ωij and ω−i,−j over a window of time-samples w. At each iteration
of the nonlinear optimization, we perform a linear least squares
solve for Bij and B−i,−j , from which we can compute Aij , A−i,−j ,

θij and θ−i,−j as outlined before. Let

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(�ra
ij) sin(�ra

ij) cos(�ra
−i,−j) sin(�ra

−i,−j)
− sin(�ra

ij) cos(�ra
ij) sin(�ra

−i,−j) − cos(�ra
−i,−j)

...
...

...
...

cos(�rb
ij) sin(�rb

ij) cos(�rb
−i,−j) sin(�rb

−i,−j)
− sin(�rb

ij) cos(�rb
ij) sin(�rb

−i,−j) − cos(�rb
−i,−j)

⎤
⎥⎥⎥⎥⎥⎥⎦

be the linear operator, where a = −w/2 and b = w/2. Then

M

⎡
⎢⎢⎢⎣

Re(Bij)
Im(Bij)

Re(B−i,−j)
Im(B−i,−j)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Re(F[h]ij (ta))
Im(F[h]ij (ta))

...
Re(F[h]ij (tb))
Im(F[h]ij (tb))

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7)

Ignoring degenerate situations, the linear system has full rank when
the time window includes two samples. The full nonlinear equa-
tion system becomes well posed when the time window includes
three samples and with more than three samples the system is
overdetermined. In Section 5 we provide a more in-depth anal-
ysis of the effect of time step and window size on the error in
estimated parameters. Two rows in the matrix are linearly depen-
dent if �rs

−i,−j = {π − �rs
ij , 2π − �rs

ij }. Furthermore two odd- or
even-numbered rows are linearly dependent if �

rs1
−i,−j = �

rs2
−i,−j ±π

and �
rs1
ij = �

rs2
ij ±π . Provided that this is not the case and both �rs

ij

and �rs
−i,−j are nonzero (they can however be � 1), the aforesaid

system has full rank. If one or both of �rs
ij and �rs

−i,−j are zero, a
rank-2 system can be derived under the assumption that the wave
traveling in either the positive or negative direction is identically
zero.

The estimation of wave parameters is performed at the resolution
of the input height field, whereas the output height (and velocity)
fields are typically synthesized at higher resolution. The synthesis
process is the subject of the next section.

4. SYNTHESIS OF HEIGHT AND VELOCITY

Given the estimated wave parameters for each wave vector, the low
frequencies of the output height are synthesized by using Eq. (4) to
construct a set of Fourier coefficients followed by an inverse FFT.
Next a set of low-frequency horizontal displacements are computed
in Fourier space, transformed to the spatial domain, and used to
displace a regular lattice. The horizontal displacements will add
sharper peaks and flatter troughs to the waves, but may introduce
self-intersections (Figures 2(c) and 3(b)). These self-intersections
are resolved in the spatial domain Figures 2(e) and 3(c). Finally
the Fourier coefficients of the higher-frequency waves and their
horizontal displacements are computed from a suitable spectrum,
for example, the Phillips spectrum [Tessendorf 1999], as well as
from knowledge of the angular frequencies of the estimated low-
frequency waves. In this way the higher-frequency waves move
consistently with the low-frequency input.

4.1 Adding Horizontal Displacements

The horizontal displacements can be synthesized using an in-
verse FFT. In particular the Fourier coefficients of the horizon-
tal displacements are given by [Bridson 2008, formula (13.20)]:
(Xij (tr), Zij (tr)) = √−1 �k

k
F [h̃]ij (tr). Note that the displacements

do not depend explicitly on the estimated wave parameters, just

ACM Transactions on Graphics, Vol. 32, No. 1, Article 2, Publication date: January 2013.

Synthesizing Waves from Animated Height Fields • 2:5

(a) self-intersection resolution by guaranteeing
a positive Jacobian with a global displacement
scale α is too conservative

(b) no self-intersection handling triangles with
negative Jacobian are colored red

(c) self-intersection resolution using our pro-
posed optimization on displacements

Fig. 3. Illustrates self-intersections occurring when adding horizontal displacements and the two main approaches explored for resolving these.

the Fourier coefficients. However, the Fourier coefficients of the
synthesized higher-frequency waves depend on the estimated wave
parameters and we need to compute horizontal displacements for
these high-frequencies as well.

The horizontal coordinates in the spatial domain are computed
as

xpq (tr) = p

nx

Lx + αpq (tr)�xpq (tr), (8)

zpq (tr) = q

nz

Lz + αpq (tr)�zpq (tr),

where �xpq and �ypq are the horizontal displacements computed
by the inverse Fourier transform of (Xij (tr), Zij (tr)), αpq is the
scale of the horizontal displacement at grid point (p, q) which is
traditionally specified manually by an artist but can be computed
automatically as described next. Setting αpq = 1 typically leads to
self-intersections (Figures 2(c) and 3(b)). On the one hand we wish
to avoid self-intersections, and on the other hand we wish to include
as much of this horizontal displacement as possible because it adds
realism (up to some limit) to both the shape and movement of the
waves.

4.2 Resolving Self-Intersections

In this section we explore and discuss different methods for resolv-
ing self-intersections arising from horizontal displacements. We
focus mainly on two approaches. The first approach guarantees a
positive Jacobian of the horizontal displacements inspired by the
work of Tessendorf [1999] (Figure 3(a)). The second approach is
a novel algorithm that performs explicit optimization on the dis-
placements directly (Figure 3(c)). The former approach is simple to
implement and about an order of magnitude faster than the latter,
but unfortunately it can be too conservative and suffer temporal in-
stability. The latter approach is more robust and gives better results
in general.

If an automatic approach was not a requirement, an option for
resolving self-intersections would be to have an artist paint the
scale of the displacements αpq iteratively until the self-intersections
were resolved, which obviously has down-sides in terms of tedious
expert user involvement. Another automatic approach would be
to procedurally remove the self-intersections by detecting lattice
intersections and removing the loops seen in Figure 2(c), however

the height of the output would no longer match the height of the
input.

It has previously been observed [Fournier and Reeves 1986]
that for a single trochoid, ensuring that kA < 1 will avoid self-
intersections, where k is the wave number and A is the amplitude.
However, this is only true for a single trochoid in isolation. When
adding several trochoids, this property does not hold.

4.2.1 Guaranteeing a Positive Jacobian. Tessendorf [1999]
proposes using the Jacobian of the displacements (see Tessendorf
[1999] for an expression of the Jacobian) to detect areas of self-
intersections in order to add foam and spray. Similarly the Jacobian
can be used to resolve self-intersections since finding the maximum
αpq that guarantees a positive Jacobian everywhere will avoid self-
intersections. Figure 2(d) illustrates the approach of finding a global
α that guarantees a positive Jacobian everywhere. This approach is
conservative and is subject to temporal instability (see the accom-
panying video). If we allow the αpq to vary spatially and pose the
problem of maximizing

∑
pq |αpq |2 subject to a positive Jacobian,

we obtain a quadratic optimization with linear constraints for a 1D
curve and a quadratic optimization with quadratic constraints for
a 2D surface. The problem can be simplified by assuming that the
spatial derivative of αpq is small compared to the spatial derivative
of the displacements. In doing so, the problem will become a local
equation for αpq at each grid point. Unfortunately this approach
does not work well in practice; the preceding assumption often turns
out to be invalid and self-intersections remain. The computation of
the Jacobian involves inverse FFTs to form the spatial derivatives
of the displacements. To avoid these additional transforms and the
quadratic constraints, we propose to perform an optimization on
the displacements directly (as opposed to an optimization on the
Jacobian). In addition this allows us to enforce constraints on the
steepness of the waves. We describe this approach in detail next.

4.2.2 Explicit Optimization on Displacements. We pose the
problem of computing a self-intersection-free lattice as a con-
strained optimization on the displacements. In particular we solve
for the coordinates (x̃pq , z̃pq) free of self-intersections, by minimiz-
ing

nx−1∑
p=0

nz−1∑
q=0

|(xpq, zpq) − (x̃pq , z̃pq)|2 (9)

ACM Transactions on Graphics, Vol. 32, No. 1, Article 2, Publication date: January 2013.

2:6 • M. B. Nielsen et al.

(a) an undeformed quad (b) constraint (10) (c) constraint (11) (d) constraints (12), (13) (e) constraints (14), (15)

Fig. 4. Illustrates the constraints in Eq. (10) to Eq. (15) used to guarantee a self-intersection-free lattice in the optimization on displacements. The circled
vertex is constrained to stay within the gray region.

subject to a set of linear constraints that guarantee a self-
intersection-free lattice (defined shortly), where (xpq, zpq) are given
by Eq. (8) with αpq = 1. The velocity field giving rise to the hor-
izontal displacements is the gradient of a potential function since
the waves are linearized [Lautrup 2005; Bridson 2008]. This means
that the velocity field is irrotational so the horizontal deformations
will not include global rotations, although the lattice may exhibit a
significant amount of shearing. Due to this property the constraints
do not have to take into account rotation and simple linear con-
straints suffice. Consequently the optimization falls into the class of
quadratic programming. The linear constraints are formulated as six
local inequality constraints per quad in the planar lattice. The con-
straints couple all vertices in the lattice due to the sharing of vertices
between quads. Figure 4 depicts a quad and serves as an illustration
of the constraints that ensure a self-intersection-free lattice. Next
the constraints are given followed by an in-depth description.

ε ≤ x1 − x2 (10)

ε ≤ z2 − z1 (11)

ε ≤ 0.5(x1 + x2) − x0 (12)

ε ≤ 0.5(z2 + z1) − z0 (13)

ε ≤ x3 − 0.5(x1 + x2) (14)

ε ≤ z3 − 0.5(z2 + z1) (15)

Assuming that ε > 0, Eq. (10) (Figure 4(b)) ensures that the
point (x1, z1) stays in the half-plane x ≥ x2 + ε. Similarly Eq. (11)
(Figure 4(c)) guarantees that the point (x1, z1) stays in the half-
plane z ≤ z2 − ε. To avoid self-intersections we furthermore need
to ensure that the point (x0, z0) does not cross the line segment
(x1, z1) → (x2, z2) in the lower triangle (Eq. (12) and Eq. (13)
in Figure 4(d)), and that the point (x3, z3) does not cross the line
segment (x2, z2) → (x1, z1) in the lower triangle (Eq. (14) and Eq.
(15) in Figure 4(e)). To ensure that the constraints remain linear in
the latter two cases, the circled vertex is in each case restricted by
the intersection of two half-planes.

The ε parameter can be used to adjust the minimum area of
a deformed triangle and hence also the steepness of the result-
ing waves. For our results we use ε = min(Lx/nx, Lz/nz)/4. The
quadratic programming problem can be solved within feasible time
(from below a second to a couple of minutes) on a single thread
for lattices of size 40 × 40 to 200 × 200. To avoid quadratic pro-
gramming on too large lattices, we make the assumptions that the
self-intersections are caused by the large-amplitude low frequen-
cies present in the input height field and that the additional small-
amplitude high-frequency detail added is free of self-intersections.
This allows us to resolve the self-intersections at the resolution of
the low-frequency input height field and next smoothly interpolate

the self-intersection-free horizontal displacements to the resolution
at which the output height field will be synthesized.

Figure 3(c) and the accompanying video show how the quadratic
programming approach preserves a significant portion of the hori-
zontal displacement (as opposed to the Jacobian-based approach in
Figure 3(a)) while producing a lattice free of self-intersections.

4.3 Adding High-Frequency Waves

When adding higher-frequency waves, the speed at which they move
is important to convey a more realistic wave motion. Part of what
makes waves look realistic is that lower-frequency waves move
faster than higher-frequency waves (see the accompanying video).
In this section we address how to synthesize the higher-frequencies
motivated by a physical approximation.

To add higher-frequency waves to the estimated low-frequency
waves, the user specifies the wave number kmin starting from which
high-frequency waves will be added. These higher-frequency waves
can be added using any suitable spectrum: in this article we use the
Phillips spectrum [Tessendorf 1999].

The angular frequency of the higher spatial frequency waves is
computed based on an estimate of depth from the movement of the
low spatial frequency waves. In particular the angular frequency
(dispersion relation) is given by [Lautrup 2005]

ωk =
√

gk tanh (kd), (16)

where g is the gravitational acceleration, d is the depth, and k
is the wave number. Inverting this formula for depth we obtain
d = tanh−1(ω2

k/(gk))/k. Since tanh converges asymptotically to
one, the inversion tanh−1 is only reliable up to arguments of size
approximately 1 − 10−6, depending on numerical accuracy. Argu-
ments closer to one will return ∞. Hence for a reliable estimation
of depth we must ensure kd < tanh−1(1 − 10−6) ≈ 7.25. If kd
is larger, tanh−1 will return ∞ and the estimated depth d will be
infinite as well. Since d is not known, the user has to settle on
a maximum depth up to which a reliable estimate is desired and
above which an infinite depth (deep water waves) can be accepted.
Let the maximum reliable depth be given by dmax, then we must
ensure that for all wave numbers k used in the estimation of depth,
k < min(tanh−1(1 − 10−6)/dmax, kmin). To get a more robust depth
estimate for the angular frequency computation we next combine
the depths estimated for each reliable wave vector into a single
scalar by setting d = (

∑
Aidi)/

∑
Ai , where Ai is the amplitude

of the i’th contributing wave vector and di is the depth. Finally we
use the estimated depth d in the dispersion relation formula Eq. (16)
to compute the angular frequencies of the higher spatial frequency
waves. This ensures that the higher spatial frequencies move consis-
tently with the most dominating (in terms of amplitude) low spatial
frequency waves.

ACM Transactions on Graphics, Vol. 32, No. 1, Article 2, Publication date: January 2013.

Synthesizing Waves from Animated Height Fields • 2:7

4.4 Computing the Velocity Field Analytically

A volumetric velocity field extending below the surface can be
computed by reconstructing the velocity at two layers (Figure 2(g))
followed by a computation of the potential flow using the two layers
as a boundary condition [Nielsen and Bridson 2011]. The height,
displacement, and velocity of the bottom layer are computed from
the top layer by multiplying each frequency of these fields by eky ,
where k is the wave number and y is the (negative) depth. The
volumetric velocity field can be used to drive particle simulations
of bubbles, foam, and splashes or be used as input to a shape-
based guiding method [Nielsen and Bridson 2011]. One of the
advantages of using the estimated waves (as opposed to the original
height field) as input to a shape-based guiding method is that the
original height field will only have nonzero velocity in the vertical
direction, whereas the estimation provides us with a full 3D velocity
field (Figure 1(c)) The velocity field at a particular depth can be
synthesized using an inverse FFT. The Fourier coefficients can be
derived from Bridson [2008, formula (13.16)]. Furthermore we need
to take into account that the angular frequency is time dependent
and employ the fundamental theorem of calculus. We obtain the
following expressions for the Fourier coefficients of the velocity
field.

Uij (tr) = 1

2
e

√−1(θij −�r0
ij

) Aij (tr)ωij (tr)2πi

kL

+ 1

2
e

−√−1(θ−i,−j −�r0
−i,−j

) A−i,−j (tr)ω−i,−j (tr)2π (−i)

kL

Vij (tr) = 1

2

√−1e
−√−1(θ−i,−j −�r0

−i,−j
)
A−i,−j (tr)ω−i,−j (tr)

− 1

2

√−1e
√−1(θij −�r0

ij
)
Aij (tr)ωij (tr)

Wij (tr) = 1

2
e

√−1(θij −�r0
ij

) Aij (tr)ωij (tr)2πj

kL

+ 1

2
e

−√−1(θ−i,−j −�r0
−i,−j

) A−i,−j (tr)ω−i,−j (tr)2π (−j)

kL

Note that these expressions are not simple functions of the Fourier
coefficients for the height field, hence the estimated wave parame-
ters are required to form the Fourier coefficients of the velocity field.
Since the self-intersection handling changes the displacements we
add a correction to the Uij and Wij components of the velocity field.

In particular Uij
+= d(x̃pq − xpq)/dt and Wij

+= d(z̃pq − zpq)/dt .
As an alternative to the analytical approach outlined before, the

velocity field can be computed discretely using a finite difference
approximation based on the displacements of the grid points of the
lattice. The analytical approach produces a more accurate velocity
field at the certain point in time it is evaluated, however it does not
ensure that particles remain constrained on the surface when inte-
grating over a single time step. A forward finite difference approach
can ensure this.

5. RESULTS AND DISCUSSION

We have implemented our proposed algorithms in C++ and
integrated them as a plugin in Maya. We use the Intel MKL for the
FFT transforms as well as for the linear and nonlinear least squares.
For solving the quadratic optimization problem we use OOQP
[Gertz and Wright 2003]. All timings (seconds per frame) are
listed in Table I and are obtained using a computer equipped with
an 8 core 2.66 GHz Intel Xeon processor and 16GB of memory.
OOQP is currently single-threaded so the reported timings for
self-intersection resolution are for a single thread only. Recent

Table I. Timings in Seconds per Frame (average)

example production noise Phillips spectrum

waves waves waves

figure 1 figure 5 figure 6

estimation 0.37 0.031 0.0050

synthesis 0.86 0.87 0.86

self-intersection 0.63 1.1 1.3

total 1.9 2.0 2.1

The synthesis time includes the time for synthesizing both velocity and height.
Estimation is done at resolution 502 and synthesis is done at resolution 20002.

Fig. 5. (Left) Input waves formed by summing Perlin [1985] noise with
varying amplitudes, wave vectors, and angular frequencies. (Right) Output
waves with horizontal displacements and details.

Fig. 6. (Left) Input waves formed by a summation of low-frequency
waves based on the Phillips spectrum [Tessendorf 1999]. (Right) Output
synthesized waves with horizontal displacements and high-frequency details
added. Horizontal displacements have been added to the input surface in the
bottom row, but not the top row. Notice how the output surface preserves
the sharpness present in the input surface shown in the bottom row.

work has explored parallel algorithms for quadratic programming
and near-linear speedups in the number of processors have been
reported [Gondzio and Grothey 2007].

To evaluate the accuracy of our estimation algorithm we compute
the maximum norm of the relative error in estimated amplitude,
phase shift, and angular frequency compared to ground truth. The
parameters of the input waves are temporally constant and initialized
from a random variable with uniform distribution. In the test we used
nt = 100, nx = 20, nz = 20, w = 6 and the convergence threshold
τ = 10−11. As shown in Figure 7, the maximum norm of the relative
error over all wave vectors is below 6 · 10−7 for amplitude, below
5 · 10−4 for phase shift, and below 1 · 10−5 for angular frequency.

ACM Transactions on Graphics, Vol. 32, No. 1, Article 2, Publication date: January 2013.

2:8 • M. B. Nielsen et al.

(a) (b) (c)

Fig. 7. Shows the maximum norm over 100 frames of the relative error in estimated amplitude, phase shift, and angular frequency on a logarithmic scale. The
input amplitudes, phase shifts, and angular frequencies are temporally constant and are generated randomly with a uniform distribution for each wave vector.

Fig. 8. Maximum norm of error in estimated parameters as a function of
�t and the number of samples in time.

Figure 8 depicts how the maximum norm in the error of estimated
parameters varies as a function of the time step, �t , and the number
of samples in time for the test in Figure 7. In practice we use
�t = 1/24 of a second and six samples in time centered about
the current time step and distributed evenly as integer multiples
of �t . This strikes a balance between faster performance (fewer
samples in time included in the estimation) and a low error. As
Figure 8 illustrates, the behavior of including additional samples
in time is more complicated than a simple time-averaging of the
estimated parameters as this would result in a steady increase in
the residual. It can furthermore be observed that the residual does
not tend to zero as �t → 0. We hypothesize that this is caused by
numerical issues involving predominantly the slower moving waves
requiring a certain �t in order to reliably estimate the speed. We
have not proven convexity of the nonlinear objective function, which
would be implied by the Hessian of ‖b−M(MT M)−1MT b‖2

2 with
respect to the variables (ωij , ω−i,−j) being positive semidefinite,
where b is the right-hand side of Eq. (7) and M(MT M)−1MT b is
the solution to the normal equation of the least squares system in
Eq. (7). However, in practice we have never observed any troubles
with convergence or hints that multiple local minima exist: a single
starting guess for the nonlinear estimation appears to suffice.

Figure 1 shows an example of previs waves originating from a vi-
sual effects production environment. The intent of the previs height
field is to model a set of static sand dunes that gradually transition
into waves in a stormy ocean. Both angular frequencies and ampli-
tudes vary in time; see the accompanying video. The input previs
is sampled and wave parameters estimated on a 502 grid and the
output synthesized on a 20002 grid. This example is representative
of the type of input an artist will input to the system in practice.
The realism of the output waves is to a large extent limited by the
input height field and illustrative of our choice to closely follow the
input height field in order not to compromise the art direction, even

though the wave dispersion changes in a nonphysical way over time.
In Figure 5 we have constructed an input height field by summing
Perlin noise with varying amplitudes, wave vectors, and angular
frequencies. The wave parameters are estimated on a 502 grid and
the output waves are synthesized on a 20002 grid. The accompa-
nying video shows a comparison between the output Perlin noise
animation with and without addition of horizontal displacements.
The animation without horizontal displacements is representative
of what an artist can do manually with existing tools, whereas our
method is automated and allows for addition of horizontal displace-
ments. Figure 6 depicts an example where the input consists of low
frequencies of a Phillips spectrum. Our algorithm detects the deep
water dispersion relation present in the input and uses this to synthe-
size the higher-frequency detail. The wave parameters of the input
are estimated on a 502 grid and the output synthesized on a 20002

grid. The accompanying video shows the output Phillips spectrum
animation with a buoy attached to a vertex in the deforming lattice.
The high-frequency circular movement of the buoy is indicative of
the high-frequency waves passing by underneath.

There are several limitations to our approach. Currently we do
not explicitly handle nonperiodic signals. This means that the syn-
thesized signal may in some cases deviate considerably from the
input close to the boundary of the domain. Furthermore the self-
intersection resolution algorithm performing explicit optimization
on displacements does not guarantee the resulting lattice will be
periodic even though the input height field is periodic. However,
we emphasize that for most of our practical applications the input
height field is itself not periodic and comprises the entire visual area
of interest. Future work should address cases where the input is re-
quired to be tiled. The physically based formula used to compute
the angular frequency from the depth (Eq. (16)) limits the maxi-
mum speed of the synthesized detail to be the speed of deep water
waves. This means that if the input height field exhibits wave speeds
above the speed of deep water waves, the high-frequency detail will
currently not move fast enough. In practice we have so far not ex-
perienced this to be a problem. Also note that in reality capillary
waves can move faster than deep water waves, but in this work we
do not model waves in the capillary regime. Our method can also
be used to detect dispersions in height fields originating from simu-
lations of the shallow water and wave equations. Since our method
works in the nonlocal Fourier domain, the depth can vary in time
but is assumed spatially constant. Adding horizontal displacements
will introduce sharper peaks and flatter troughs, but may change
the horizontal positioning of the individual waves such that they
do not perfectly line up with the input previs. It is left up to the
individual artist to control the amount of horizontal displacements
and thus how much the synthesized waves are allowed to deviate

ACM Transactions on Graphics, Vol. 32, No. 1, Article 2, Publication date: January 2013.

Synthesizing Waves from Animated Height Fields • 2:9

from the input. One could argue that resolving self-intersections is
incorrect because a self-intersection signals that the amplitude has
been pushed beyond the accuracy limits of the linear wave model.
However, in practice artists will often set the amplitudes higher than
what is physically plausible to obtain a desired dramatic effect.

6. CONCLUSION

In this article we proposed a set of automated algorithms for syn-
thesizing waves from animated height fields. We demonstrated the
ability of the algorithms to relatively closely match the input while
adding sharper peaks, flatter troughs, and higher-frequency detail.
Looking to the future we argue bringing physics into the previs
stage, in an unobtrusive way, would be a significant help in avoiding
difficult compromises where the previs input is inadvertently far
from physically correct. We envisage accelerating our method to
make an interactive tool where the previs artists could use all their
existing techniques but also see how far from physically consistent
their current animation is, or what depth or wave spectrum it
implies, and adjust the animation towards a desired physical
consistency. We also believe the estimation of wave parameters
proposed in this article may be of use to analyze the effectiveness
of a particular wave dampening approach [Söderström et al. 2010].

ACKNOWLEDGMENTS

We wish to thank the following individuals for their help and sup-
port of our work: Joe Letteri, Sebastian Sylwan, Kevin Romond,
Christoph Sprenger, Dave Gouge, Natasha Turner as well as Diego
Trazzi, Areito Echevarria, Brandon Davis and Tim Ebling, Mark
Leone and Paul Roberts. In addition we wish to thank the referees
for their insightful comments and suggestions.

REFERENCES

ANGELIDIS, A., ANON, J., BRUINS, G., AND REISCH, J. 2011. Ocean mission
on cars 2. In ACM SIGGRAPH Talk, Article No. 17.

BHATACHARYA, H., NIELSEN, M. B., AND BRIDSON, R. 2012. Steady state
stokes flow interpolation for fluid control. In Proceedings of Eurographics
‘12 Short Paper.

BRIDSON, R. 2008. Fluid Simulation for Computer Graphics. AK Peters.
DARLES, E., CRESPIN, B., GHAZANFARPOUR, D., AND GONZATO, J.-C. 2011.

A survey of ocean simulation and rendering techniques in computer
graphics. Comput. Graph. Forum 30, 1, 43–60.

FATTAL, R. AND LISCHINSKI, D. 2004. Target-Driven smoke animation. In
Proceedings of ACM SIGGRAPH’04: Papers. 441–448.

FOURNIER, A. AND REEVES, W. T. 1986. A simple model of ocean waves.
SIGGRAPH Comput. Graph. 20, 75–84.

FRECHOT, J. 2007. Realistic simulation of ocean surface using wave spectra.
J. Virt. Reality Broadcast. 4, 11.

GERTZ, E. M. AND WRIGHT, S. J. 2003. Object-Oriented software for
quadratic programming. ACM Trans. Math. Softw. 29, 1, 58–81.

GONDZIO, J. AND GROTHEY, A. 2007. Parallel interior-point solver for struc-
tured quadratic programs: Application to financial planning problems.
Ann. Oper. Res. 152, 319–339.

HONG, J.-M. AND KIM, C.-H. 2004. Controlling fluid animation with
geometric potential: Research articles. Comput. Animat. Virtual Worlds
15, 3–4, 147–157.

HUANG, R., MELEK, Z., AND KEYSER, J. 2011. Preview-Based sampling
for controlling gaseous simulations. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA ’11).
ACM, New York, 177–186.

LAUTRUP, B. 2005. Physics of Continuous Matter. IOP Publishing Ltd.
MASTIN, G. A., WATTERBERG, P. A., AND MAREDA, J. F. 1987. Fourier

synthesis of ocean scenes. IEEE Comput. Graph. Appl. 7, 16–23.
MCNAMARA, A., TREUILLE, A., POPOVIC, Z., AND STAM, J. 2004. Fluid control

using the adjoint method. In Proceedings of the ACM SIGGRAPH’04:
Papers. ACM, New York, 449–456.

MIHALEF, V., METAXAS, D., AND SUSSMAN, M. 2004. Annimation and
control of breaking waves. In Proceedings of the ACM/Eurographics
Symposium on Computer Animation. 315–324.

NIELSEN, M. B. AND BRIDSON, R. 2011. Guide shapes for high resolution
naturalistic liquid simulation. In Proceedings of the ACM SIGGRAPH’11:
Papers. ACM, New York, 83:1–83:8.

NIELSEN, M. B. AND CHRISTENSEN, B. B. 2010. Improved variational guiding
of smoke animations. Comput. Graph. Forum 29, 2, 705–712.

NIELSEN, M. B., CHRISTENSEN, B. B., ZAFAR, N. B., ROBLE, D., AND

MUSETH, K. 2009. Guiding of smoke animations through variational
couplings of simulations at different resolution. In Proceedings of
the ACM/Eurographics Symposium on Computer Animation. 206–
215.

PEACHY, D. R. 1986. Modeling waves and surf. SIGGRAPH Comput. Graph
20, 65–74.

PERLIN, K. 1985. An image synthesizer. In Proceedings of the 12th

Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’85). ACM, New York, 287–296.

RASMUSSEN, N., ENRIGHT, D., NGUYEN, D. Q., MARINO, S., SUMNER,
N., ET AL. 2004. Directable photorealistic liquids. In Proceedings of
the ACM/Eurographics Symposium on Computer Animation. 193–
202.

SHI, L. AND YU, Y. 2005a. Controllable smoke animation with guiding
objects. ACM Trans. Graph. 24, 1, 140–164.

SHI, L. AND YU, Y. 2005b. Taming liquids for rapidly changing targets.
In Proceedings of the ACM/Eurographics Symposium on Computer
Animation. 229–236.

SODERSTROM, A., KARLSSON, M., AND MUSETH, K. 2010. A pml-based
nonreflective boundary for free surface fluid animation. ACM Trans.
Graph. 29, 136:1–136:17.

SPENCER, L., SHAH, M., AND GUHA, R. K. 2006. Determining scale and
sea state from water video. IEEE Trans. Image Process. 15, 6, 1525–
1535.

TESSENDORF, J. 1999. Simulating ocean water. In SIGGRAPH’99 Course
Notes.

THON, S. AND GHAZANFARPOUR, D. 2002. Ocean waves synthesis and
animation using real world information. Comput. Graph. 26, 1, 99–
108.

THUREY, N., KEISER, R., PAULY, M., AND RUDE, U. 2006. Detail-Preserving
fluid control. In Proceedings of the ACM/Eurographics Symposium on
Computer Animation. 7–12.

TREUILLE, A., MCNAMARA, A., POPOVIC, Z., AND STAM, J. 2003. Keyframe
control of smoke simulations. In Proceedings of the ACM SIGGRAPH’03:
Papers. 716–723.

WONG, M. W. 2011. Discrete Fourier Analysis. Springer.

Received November 2011; revised March 2012; accepted May 2012

ACM Transactions on Graphics, Vol. 32, No. 1, Article 2, Publication date: January 2013.

